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Introduction 
Hello and welcome to TutorTube, where the Learning Center's lead tutors help 
you understand challenging course concepts with easy-to-understand videos. 
My name is Matt Curtin, lead tutor for computer science. In today's video, we 
will be exploring using functions in C++. Let's get started. 

 

Agenda 
In today's video we will be discussing what is a function, how to make a 
function, coding a function example, and then at the end we will do a quick 
review and wrapping up. 

 

Why Functions? 
So, why do we use functions? Have you ever been coding and realize that your 
code is kind of becoming spaghetti code, where everything is kind of a mess, 
you don't really know what's going on, and your code is lacking organization? 
Well, functions allow us to accomplish three things: reusability, so we can use a 
function to reuse the same code over and over again without having to rewrite 
it. We can accomplish simplicity. A function allows us to make our program look 
nicer so that we can read it easier, and that's the third bullet point is readability. 
We can use functions to simplify parts of our code so that we understand what 
our program is doing. 

 

How to Think About Functions 
An analogy that helped me understand functions was to think of them as 
errands. Functions are just errands in your code. Your code tells a function to 
either do something, get something, or change something. You can kind of think 
of it as a parent telling a child what to do. Go do this errand and then the child 
comes back. Functions are very, very similar as you'll see. 
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Function Flow Line 
Here's what happens when you use functions in your programs. The first thing is 
that your code runs until it needs something from your function. So just like 
normal it goes and goes and goes but wait! What happens when we need 
bananas in our main method? Well, we need to go get bananas. So, what do 
we do? The next part: the main method pauses what it's doing, it stops in its 
tracks, and it goes over to your function and starts buying bananas. Your 
function runs and completes, so if our buy bananas function is going, it's going 
to run and complete. After it completes, we're going to jump all back to where 
we left off in the main method. After we jump back, we bring our bananas with 
us. And now we continue our program and we have the bananas that we got 
from our getBanana() or buyBanana() function. This is a simplistic example but it 
just kind of shows the flow chart of how a function interacts with your program. 

 

Functions That Do Things 
Here are a few applications of functions. For functions that do things, you can 
have a function print something out, initialize something - so you know setting a 
value to variables, you can have functions that prompt the user for information, 
or open files, or perform algorithms, and so on and so on. 

 

Functions That Get Something 
Functions that get something: these are functions that give you a value in return, 
so they bring you back something. You can either get the sum of two numbers, 
get how many bananas are in an array, get the name of a classroom, or you 
know get how many vowels are in word. These functions can bring you back 
something that you can work with. 

 

Functions That Change Something 
Functions that change things: if you want to change a variable or change the 
state of something. You can have a function that multiplies things by 2, a 
function that makes a word all lower-case letters, remove all spaces from a 
word, take this tax on a sale, or take out all duplicates in an array. So, your 
function can change the value or state of things as well. 
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The Parts of a Function 
We are now going to look at the different parts of a function. A function is made 
up of three things: the first one being the return type, the second being the 
name, and the third being the parameters or arguments. If we look at a function 
such as int main(), our return type would be int, our name would be main, and 
we would have no parameters or arguments. Another example would be bool 
isPositive(int x). Our return type would be bool our name would be is positive 
and our parameters and arguments would be one variable that is an integer x. 

 

Return Type 
We're now going to look at what return type is specifically. Return type is 
essentially a promise. For example, if we're looking at int main(), main() is 
promising it will return an int. So, in terms of our errand, you're promising your 
parent that you're going to come back with the bananas that you were tasked 
with buying. So, if a function had a value, as if you were to set something to the 
function, its type would be the return type. A return type would be asking "what 
is my function going to give me?" So, for bool isPositive(int x), our return type is 
bool. We put the return type in front of the function when we make it, so you 
can only have one return type and you can only return one thing. In this case, 
isPositive() is going to return a bool. 

 

Name 
Now we're going to look at name, and naming our functions is really important 
too. How we name functions can tell us a lot, whether we're working by 
ourselves or working in a group. So in terms of our function getBanana(), the 
name implies it'll get us a banana. It's very straightforward: get banana will get 
you a banana. calculateTax() implies that this function will calculate something 
involving tax. My philosophy is that the more specific your function name the 
better. That way everything is clear when you see it written in your code. 
Another thing is setBananaWeight(). This name implies it will set the value of a 
bananas weight. Again, it's very specific. You know exactly what it's doing. It's 
setting the weight of a banana. When you see this written in your code you 
know what it's talking about. 
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Verb Noun 
A lot of times the pattern that I like to stick to is verb-noun for functions, so what 
is the function doing and was it doing it too. Some examples of verbs can be 
set, get, calculate, perform, remove, add, schedule, or parse. And some 
examples of nouns could be number, time, weight, characters, punctuation, 
size, date, bananas. One function that we could do would be called 
addBanana() or removeDate() or calculateTime(), parseNumber(). Basically, the 
function name needs to describe what it's doing and what it's doing it to. That 
way when you're writing, when you see it written in your code, you know what 
it's doing. 

 

Arguments 
The next thing that we're going to look at is arguments. So, this is like if your 
parent gives you five dollars to go get you bananas. The arguments are the five 
dollars and maybe another argument would be the directions to the store. The 
parent would be the main method; it's a thing calling the function. Getting the 
bananas would be the function, so that is the errand. The five dollars is the inputs 
or the arguments, so like we said before five dollars is what the parent gives you 
and in return, you're going to give it back bananas. So something that this 
function would look like would be bananas getBananas(int dollarAmount). 
Passing in a certain dollar amount you're going to get a certain amount of 
bananas. 

 

Arguments Continued 
Arguments are often also called parameters, and there are two modes that you 
can call parameters: by pass by value which is you're just passing a copy of the 
variable to the function, and pass by reference is you passing the address of a 
variable. 

 

Pass by Value vs. Pass by Reference 
Here are some key differences between pass by value and pass by reference. 
To pass a variable in by value, you would just mark it int x like if you were 
declaring it. This parameter is only a copy, meaning that changes made to this 
variable inside of the function only affect the variable while you are inside the 
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function. Changes made to the variable inside of the function do not affect the 
variable outside of the function. To pass a variable in by reference you would 
have to add this ampersand next to the return type. This denotes that you are 
passing in a location in memory, or you're just passing in an address. What this 
does is that changes made to this variable inside of your function will affect the 
variable in all parts of your program. 

 

Making a Function 
When making a function, I like to go through this process. Let's say that we are 
making a function that calculates the area of a rectangle. The first thing that we 
would need to do is to identify our inputs. What do we need to know to 
calculate the area? Well we need to know the length and the width. The next 
thing we would need to do is to identify our outputs. This gives us our return type. 
So, we need to know the area of a rectangle, so we're going to get an int. The 
next thing we need to do is to make an informative name, so if we are making a 
function to calculate area let's just name it calculateArea(). Another name you 
could do would be calculateAreaOfRectangle() if you want to be really really 
specific. Here is a chart that I can do to say "here's my inputs, here's my outputs, 
and the name of my function," and then using that I can figure out the return 
type, the name of my function, and the parameters that I need to list, and then I 
can define the function with the behavior that I need. 

 

Creating a Function Example 
Here I have a program where it would be a nice application of using a function. 
Here I want to calculate the area of a circle given a radius. I'm going to assume 
that in this program I want to use this calculation more than once or multiple 
times and I don't want to repeat code. Here's a nice place to use a function. 
Let's identify what we want our function to be. So, what are our inputs? Well, 
we're going to input the radius as a float, so "float radius." What are our outputs? 
What do we want to be returned to us? Well, we want to it to return a float that 
represents the area of a circle. And what is the name of our function going to 
be? How about calculateAreaOfCircle()? Be really specific with it. So, given this 
information we need to figure out how to declare our function. Let's start with 
the return type. The return type is going to be whatever our output is. Here we 
decided that we want to return a float, so we type "float." Next, we need to type 
our name calculateAreaOfCircle(). Next, we need to place our parameters 
between the parentheses, so our parameters are just our inputs. Here we 
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decided that we want to input a float of name radius. We can name this 
whatever we want! In fact, let's name it r, so that we can fit with the standard of 
pi * r^2. Here, I'm going to declare a variable for area, and I'm going to return 
area at the end, and between declaring area and returning it I want to 
calculate what area is going to be. Well, area is going to be equal to pi * r^2, so 
let's approximate pi - 3.14 times r times r. This is an approximation of the area of 
a circle pi r squared or pi times r times r. 

What this function is doing is that if I give the function a radius, it is going to 
calculate an area and give me back that value. I'm going to give it a float and 
it's going to give me back a float. Let's call this function here, and inside our 
program let's set area = calculateAreaOfCircle(radius) and let's pass in our 
radius. 

Nice! Let's compile and see if it runs. Area is 140.955. Perfect! That's what we 
want. 

To reiterate, what this program is doing is that given a radius, to calculate area 
we call this function calculateAreaOfCircle() and we pass it in the value of 
radius. The program then jumps up to this function that declares its own area, 
sets it equal to 3.14 times the value that we passed in times the value that we 
passed in, and it's going to return the area that we calculated. So, we jump 
back down here, and we assign area equal to whatever was returned. Now we 
can cout it and deal with it in our main function and do whatever we want with 
it. 

 

Pass by Value vs. Pass by Reference Example 
We are now going to be going over an example between pass by value and 
pass by reference. Right here we have a program. Here's a function that takes in 
a number and it doubles it and then outputs that number. Inside our main 
method, we initialize the variable x = 20, we print what that value is before we 
call the function, we then call the function, and then we print what the value is 
after the function. Let's run the program and see what happens. So, we set x to 
20 here, we call the function, inside of the function the number we pass in is 
doubled, but then look at this. After the function, x is still 20. So, what's going on 
here? 

If we look, this is a pass by value function, meaning that when we call it down 
here, all we're doing is copying this - the value of whatever is inside of x - into 
number. Here, all we're doing is copying the number 20 into the variable 
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number, so any changes made to number is just a copy of x. It doesn't affect x 
at all. That's why when we exit the function and come back down here to after 
function, x is still 20 when number was 40. How do we change this? How do we 
change it so that whenever we pass in x, x is doubled so then after the function 
it's 40? What we can do is pass in number by reference.  

All we have to do is put an ampersand right here next to the type. What this 
does is that it marks it as a pass by reference instead of passing in a copy of x. 
Down here what we're doing is that we're passing in the address of x, so the 
address of x is copied to number. That means that anytime number is changed, 
x is changed as well because it's located in the same address in memory. 

Let's compile this and see what happens. Now you can see that before we call 
the function x is 20, inside of the function when we change x to number the 
number is 40, and then after the function when we leave the function x is 40 like 
it was inside the function. That is the difference between pass by value and pass 
by reference. 

 

Outro 
That's going to wrap up our video today. It's not everything about functions, but 
it should get you started and give you an idea of what you can do. Thank you 
for watching TutorTube. I hope you enjoyed this video. Please subscribe to our 
channel for more exciting videos. Check out the links in the description below 
for more information about the learning center and follow us on social media. 
See ya! 

 

Sample Code: Area of Circle 
#include <iostream> 

using namespace std; 

 

//Inputs: float radius 

//Output: float that represents the area of a circle 

//Name:   calculateAreaOfCircle 

float calculateAreaOfCircle(float r){ 
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        float area; 

        area = 3.14 * r * r; 

        return area; 

} 

 

int main(){ 

        //Info about circle 

        float radius = 6.7; 

 

        //I want a function to calculate area of a circle 

        float area; 

 

        //INSERT FUNCTION CALL HERE 

        area = calculateAreaOfCircle(radius); 

 

        //Display area 

        cout << "Area: " << area << endl; 

 

        return 0; 

} 

Sample Code: Pass by Value vs Pass by Reference 
#include <iostream> 

using namespace std; 

 

//This function doubles the number that is passed in 

void doubleNumber(int& number){ 

        number = number * 2; 
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        cout << "Inside function: " << number << endl; 

} 

 

int main(){ 

        //Init x 

        int x = 20; 

        cout << "Before function: " << x << endl; 

 

        //Call function to double x 

        doubleNumber(x); 

 

        cout << "After function: " << x << endl; 

 

} 


