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Introduction 
Hello and welcome to TutorTube, where The Learning Center’s Lead Tutors help 
you understand challenging course concepts with easy to understand videos. 
My name is Ryan Nyhus, Lead Tutor for Mathematics. In today’s video, we will 
explore Dot Products and Matrix Multiplication. Let’s get started! 

 

Dot Products 
Before we are able to multiply matrices, we need to understand dot products. A 
dot product is a combination of multiplication and addition between two 
vectors. Given two vectors  

A = [ 𝑎𝑎 𝑏𝑏 𝑐𝑐 ] and D = [ 𝑑𝑑 𝑒𝑒 𝑓𝑓 ], 

the dot product A ∙ D  is defined by  

A ∙ D = ad + be + cf. 

That is, the dot product is the summation of the products of the ith element of 
each vector. Note that for a dot product to be defined, both vectors must have 
the same number of elements. 

 

Dot Product Example 1 
Let’s do a quick example. What is the dot product of A and B if A = [1 3 4] and   
B = [4 5 2]? Recall that for a dot product, we take the ith element of each vector and 
multiply them together, then sum the products. 

So A ∙ B = 1(4) + 3(5) + 4(2) = 4 + 15 + 8 = 27. 

 

Dot Product Example 2 
Let’s do another quick example. What is the dot product of A and B if A = [2 5 3 
4] and   B = [3 2 6 4]?  

A ∙ B = 2(3) + 5(2) + 3(6) + 4(4) = 6 + 10 +18 + 16 = 50. 
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Matrix Layout 
Before we are able to multiply matrices, we also need to understand the matrix 
layout. Each element of the matrix can be recognized by two numbers, one 
corresponding to the row it is in, the other corresponding to the column it is in. 
The letter i is typically used to describe the row position, and the letter j is 
typically used to describe the column position. We write each element as aij. We 
say a matrix is of size m x n, where m is the number of rows in a matrix, and n is 
the number of columns in a matrix. I find a diagram is easier to understand, so by 
this description, a matrix looks like the following: 

Figure 1 [Matrix (Mathematics)]: 

 

This image shows the layout of a matrix as described above. The subscript i 
increases down the rows of the matrix, while the subscript j increases across the 
columns of the matrix, both from 1 to n. 

 

Notice that each element is described by its row and column in the subscript aij. 
A smaller example, a 3 x 3 matrix, looks like the following:  

Figure 2 (Nave, R): 

. 

This image shows a 3x3 matrix, with elements in the aij notation 
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Now that we understand the layout of a matrix, we can discuss how to multiply 
matrices. 

 

Multiplying Matrices 
Let’s take two matrices, A and B, and multiply them together to get a third 
matrix C. Before multiplying two matrices, you must check that their dimensions 
are compatible. For two matrices to be compatible, the matrix on the left, A 
must have the same number of columns as the number of rows of the matrix on 
the right, B. 

Each element of this new matrix C, cij is formed by the dot products of row i of 
matrix A and column j of matrix B. 

 

Example: Matrix Multiplication 

[ 
1 3
4 5
6 8

 ] * [3 5 7
2 3 8]. 

The dimensions for the resultant matrix C should be 3x3, which is the number of 
rows of matrix A by the number of columns of matrix B. 

Let’s find c11. That is, let’s find the element of the first column and row of matrix 
C. By the dot product method, we take the dot product of the first row of matrix 
A, [1 3], and first column of matrix B, [3 2]. The dot product [1 3] • [3 2] = 1(3) + 
2(3) = 9. 

Let’s put this into our matrix C: 

[
9 𝑐𝑐12 𝑐𝑐13
𝑐𝑐21 𝑐𝑐22 𝑐𝑐23
𝑐𝑐31 𝑐𝑐32 𝑐𝑐33

]. 

Now let’s do the rest of the dot products. 

c12 = [1 3] • [5 3] = 1(5) + 3(3) = 14 

c13 = [1 3] • [7 8] = 1(7) + 3(8) = 31 

c21 = [4 5] • [3 2] = 4(3) + 5(2) = 22 

c22 = [4 5] • [5 3] = 4(5) +5(3) = 35 

c23 = [4 5] • [7 8] = 4(7) + 5(8) = 68 
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c31 = [6 8] • [3 2] = 6(3) + 8(2) = 34 

c32 = [6 8] • [5 3] = 6(5) + 8(3) = 54 

c33 = [6 8] • [7 8] = 6(7) + 8(8) = 106. 

Now fill these in to their respective entries: 

[
9 14 31

22 35 68
34 54 106

]. 

This is matrix C. You can follow this procedure for any size matrix, as long as their 
dimensions are compatible. 

 

Outro 
Thank you for watching TutorTube! I hope you enjoyed this video. Please 
subscribe to our channel for more exciting videos. Check out the links in the 
description below for more information about The Learning Center and follow us 
on social media. See you next time! 
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