

Contact Us – Sage Hall 170 – (940) 369-7006

LCTutoring@unt.edu - @UNTLearningCenter

TutorTube: Pointers in C Fall 2020

Introduction

Hello and welcome to TutorTube, where The Learning Center’s Lead Tutors help

you understand challenging course concepts with easy to understand videos.

My name is Kalvin Garcia, Lead Tutor for Computer Science. In today’s video,

we will explore pointers.

Sometimes programs can get very large, especially when we declare a bunch

of variables in our functions, our structs, our classes. Pointers can help minimize

the memory being used by our programs, while also allowing for dynamic

allocation of memory.

Pointer Types and Addresses

A variable’s address is the location a variable’s value is stored. What does that

have to do with pointer? Well, a pointer is a variable, but addresses are the

values it holds. Wikipedia’s hyperlinks that lead to other wiki articles are pointers

to those articles. They use the address of the pages to point to their location.

A pointer is declared using the same data types as variables. To show the data

type is a pointer we add an * (asterisk) symbol: type* pointer_name or type

*pointer_name. A particular pointer type can only store address of the same

value type. This means, for example, int* can only store int addresses.

Allocating Memory

Pointers don’t need to be assigned variable addresses. We can also allocate

the memory they use ourselves, as programmers. Our program allocates the

memory a pointer uses during run-time.

If we have an int pointer, ptr, we can allocate memory to the pointer using the C

function malloc(): ptr = (int*)malloc(N * sizeof(int)). We can then assign value to

the pointer by dereferencing it using the * (asterisk). If we were to output the

pointer, what would be displayed? What if we output the dereferenced pointer?

Using the concept of dereferencing, we can perform arithmetic with our pointer.

In this case, we will add 10 to out pointer’s stored value. If we again output the

pointer, what will we see? What if we dereference it?

mailto:LCTutoring@unt.edu

2

In both cases, we find that outputting the pointer displays an address. This

address remains the same even after performing arithmetic to our pointer’s

value, which does change.

What if we instead wanted to create an array? We would use the same malloc

function, but instead we’ll use calloc(): ptr = (int*)calloc(sizeof(int), N). Inside of

the brackets, we would need to declare the size of the array.

There are many ways to dereference array pointers. One method is using array

notation, which uses the [] (square brackets) to denote the index of the array

we are using: ptr[i]. This makes sense since we allocated an array of memory.

Another method is using the * (asterisk) as before and adding the index to the

initial address stored in our pointer: *(ptr + i). This is because the memory is

allocated in series.

Therefore, we can add to the address and find the next address of our array. To

show this is the case, we can output ptr + i and &ptr[i], side-by-side. We know

that referencing a variable gives its address, so the address &ptr[i] should match

ptr + i, which is our initial address plus the index.

Deallocating Memory

When we allocate the memory ourselves within our program, the compiler and

computer don’t know when to stop reserving the allocated memory slots, so we

must tell the computer. We do this by freeing the pointer within our program

whenever we are done using it.

In our previous example program, I did not use the C++ delete operator to free

our pointer, but it still compiled. Again, the compiler does not know when we are

allocating memory because it is done during run-time. It is good practice to

always free pointers to avoid memory leaks.

In C++, this is done using the delete, as in: delete ptr, for single variables, and

delete [] ptr, for array pointers.

Outro

Though we did not talk about C allocation methods, it is still important to note:

we cannot allocate pointers by combining C and C++ methods. That is, if we

allocate using new, we cannot use realloc() to resize the memory allocated. This

is also true for delete and free(). If a pointer was allocated using malloc(), we

3

cannot use delete. If a pointer was allocated using new, we cannot use free().

Remember, new goes with delete and malloc()/calloc() go with free().

Thank you for watching TutorTube! I hope you enjoyed this video. Please

subscribe to our channel for more exciting videos. Check out the links in the

description below for more information about The Learning Center and follow us

on social media. See you next time!

Code

#include <stdio.h>

#include <stdlib.h>

#define SIZE 3

int main() {

 //Allocating memory C

 int* ptr;

/*

 //Allocate using malloc()

 ptr = (int*)malloc(1 * sizeof(int));

 //Assign a value

 *ptr = 10;

 //Output the pointer

 printf("%p\n", ptr);

 //Output the dereferenced pointer

 printf("%d\n", *ptr);

 //Do arithmetic with pointer

 *ptr = *ptr + 10;

 //Output pointer

4

 printf("%p\n", ptr);

 //Output dereferenced pointer

 printf("%d\n", *ptr);

 free(ptr);

*/

 //Allocate using calloc()

 ptr = (int*)calloc(SIZE, sizeof(int));

 //Assign values

 for(int i = 0; i < SIZE; ++i)

 ptr[i] = i;

 //Output the pointer and dereferenced pointer

 for(int i = 0; i < SIZE; ++i) {

 printf("%d\n", *(ptr + i));

 printf("%p\n", ptr + i);

 printf("%p\n", &ptr[i]);

 }

 //resize the pointer

 const int NEW_SIZE = SIZE + 1;

 ptr = (int*)realloc(ptr, NEW_SIZE * sizeof(int));

 //Assign the newest value

 *(ptr + 3) = 3;

 //ptr[3]

 //Output the pointer and the dereferenced pointer

 for(int i = 0; i < NEW_SIZE; ++i) {

5

 printf("%d\n", ptr[i]);

 printf("%p\n", (ptr + i));

 }

 free(ptr);

 return 0;

}

