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Introduction 

Hello! Welcome to TutorTube, where The Learning Center’s Lead Tutors help you 

understand challenging course concepts with easy to understand videos. My 

name is Ebby, Lead Tutor for Math and Political Science. In today’s video, we will 

explore Calculus-Based Optimization. Let’s get started! 

Example I  

A rectangular storage container with an open top is to have a volume of 10 𝒎𝟑. 

The length of its base is twice the width. Material for the base costs $12 per 

square meter. Material for the side’s costs $8 per square meter. Find the cost of 

materials for the cheapest such container (Stewart, 332). The container can be 

depicted as:  

 

 

 

 

𝒍 = 𝟐𝒘 comes from the problem and will help us create the equation that we 

need to optimize. In this problem we need three equations. First, the volume: 

𝒗 = 𝒍𝒘𝒉 

Next, the area of the sides:  

𝟐𝒍𝒉 + 𝟐𝒘𝒉 

Third, the area of the base:  

𝑩 = 𝒍𝒘. 

The areas of the side and base are needed in order to determine the cost of 

materials. We will utilize the 𝒍 = 𝟐𝒘 expression to make every variable in terms of 

𝒘. Substituting the volume equation gives us:  

𝒗 = 𝟐𝒘 ⋅ 𝒘 ⋅ 𝒉, 

Which simplifies to:  

𝟐𝒘𝟐𝒉. 

𝒉 

w 𝒍 = 𝟐𝒘 
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Since we know the volume is 10𝒎𝟑, we can substitute 10 in for v:  

𝟏𝟎 = 𝟐𝒘𝟐𝒉. 

Now, get h in terms of w by solving for h:  

𝟏𝟎

𝟐𝒘𝟐
= 𝒉 

which simplifies to 

𝒉 =
𝟓

𝒘𝟐
 . 

Using this information, we will put the side and base equations in terms of h. First, 

the area of the sides:  

𝐒 = 𝟐 (𝟐𝒘) (
𝟓

𝒘𝟐
) + 𝟐(𝒘) (

𝟓

𝒘𝟐
). 

Simplifying yields:  

𝟐𝟎

𝒘
+

𝟏𝟎

𝒘
=

𝟑𝟎

𝒘
 . 

Now the area of the base:  

𝑩 = 𝟐𝒘 ⋅ 𝒘 → 𝟐𝒘𝟐 . 

Now that we have both area equations in the same terms, we can determine 

the cost function. The cost function will be denoted by the letter 𝑪, and 

represent the cost of materials for the base plus the cost of materials for the 

sides. Since the cost for the base is said to be $12 per square meter and the cost 

for the sides $8 per square meter, the cost function is:  

𝑪 = $𝟏𝟐(𝟐𝒘𝟐) + $𝟖 (
𝟑𝟎

𝒘
) 

Which can be simplified to be:  

𝟐𝟒𝒘𝟐 +
𝟐𝟒𝟎

𝒘
 . 

We would like to optimize the cost of materials which, by definition, means we 

will take derivative of the function and set it equal to zero. The derivative is:  

𝑪′ = 𝟒𝟖𝒘 −
𝟐𝟒𝟎

𝒘𝟐
 . 

We must now set it equal to zero and factor:  
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𝟒𝟖𝒘 (𝟏 −
𝟓

𝒘𝟑
) = 𝟎. 

Solving for 𝒘 gives us the critical value:  

(𝟏 −
𝟓

𝒘𝟑) = 0  

𝒘 = √𝟓
𝟑

 . 

Finally, we will use the critical value to determine the optimal cost of materials 

by plugging into our original cost function:  

𝑪 = 𝟐𝟒(√𝟓
𝟑

)𝟐 +
𝟐𝟒𝟎

√𝟓
𝟑 .   

Thus, the cost of materials for the cheapest container is:  

$𝟐𝟏𝟎. 𝟓𝟑. 

Example II  

Ornithologists have determined that some species of birds tend to avoid flights 

over large bodies of water during daylight hours. It is believed that more energy 

is required to fly over water than over land because air generally rises over land 

and falls over water during the day. A bird with these tendencies is released 

from an island that is 4 km from the nearest point B on a straight shoreline, flies to 

a point C on the shoreline, and then flies along the shoreline to its nesting area 

D.  This Bird needs 1.5 times as much energy to fly over water as it does to fly 

over land. Assume that the bird instinctively chooses a path that will minimize its 

energy expenditure. Find how far point C is from B if Points B and D are 13 km 

apart (Stewart, 337). 

Given this information we can draw a picture of the bird’s flight path:  

 

 

 

 

 

 

 

    

𝟒 𝒌𝒎 

 

𝒙 𝒌𝒎 

 

(𝟏𝟑 − 𝒙) 𝒌𝒎 

 

√𝒙𝟐 + 𝟏𝟔 𝒌𝒎 

 

𝑩 

 

𝑪 𝑫 

𝟏𝟑 𝒌𝒎 
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The problem states that the island is 4km from the shoreline and we created the 

variable x to represent the length from b to c. Therefore, we can get the 

hypotenuse  

√𝒙𝟐 + 𝟏𝟔 𝒌𝒎 

which represents the optimal distance the bird should travel over water, and 

also:  

(𝟏𝟑 − 𝒙) 𝒌𝒎, 

which is the optimal distance the bird would travel over land. The problem also 

states that the bird needs 1.5 times as much energy to fly over water as it does 

over land. Therefore, we will let the energy constant the bird uses to fly over land 

be k. The energy that the bird uses to travel is a function of the distance that it 

covers, therefore we need to express both the energy that the bird uses to fly 

over water as well the energy used over land (shoreline). The energy it takes for 

the bird to fly over water can be depicted as:  

𝟏. 𝟓𝒌 ⋅ √𝒙𝟐 + 𝟏𝟔 𝒌𝒎, 

and the energy expended over land as:  

𝒌(𝟏𝟑 − 𝒙) 𝒌𝒎. 

Both of these equations represent the optimal path that the bird should take, 

and the total energy expended, E(x), can be expressed as the sum of the two:  

𝑬(𝒙) = 𝟏. 𝟓𝒌√𝒙𝟐 + 𝟏𝟔 + 𝒌(𝟏𝟑 − 𝒙) 

𝑬(𝒙) = 𝟏. 𝟓𝒌(𝒙𝟐 + 𝟏𝟔)
𝟏
𝟐 + 𝟏𝟑𝒌 − 𝟏𝟑𝒙. 

Now, we must optimize this path, which means taking the derivative and finding 

the critical value. 1st we take the derivative using chain rule and power rule: 

𝑬(𝒙) = 𝟏. 𝟓𝒌 [
𝟏

𝟐
⋅ 𝟐𝐱(𝒙𝟐 + 𝟏𝟔)−

𝟏
𝟐] − 𝒌. 

Then simplify:  

𝑬(𝒙) = 𝟏. 𝟓𝒌 [𝐱(𝒙𝟐 + 𝟏𝟔)−
𝟏
𝟐] − 𝒌 

= 𝟏. 𝟓𝒌 [
𝒙

(𝒙𝟐 + 𝟏𝟔)
𝟏
𝟐

] − 𝒌, 

and set equal to 0:  
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𝟏. 𝟓𝒌 [
𝒙

(𝒙𝟐 + 𝟏𝟔)
𝟏
𝟐

] − 𝒌 = 𝟎. 

Now, we must find the critical value by solving for x:  

𝟏. 𝟓𝒌 [
𝒙

(𝒙𝟐 + 𝟏𝟔)
𝟏
𝟐

] = 𝒌 

Divide both sides k:  

𝟏. 𝟓 [
𝒙

(𝒙𝟐 + 𝟏𝟔)
𝟏
𝟐

] = 𝟏 

𝟏. 𝟓[𝒙] = (𝒙𝟐 + 𝟏𝟔)
𝟏
𝟐. 

Square both sides to get rid of the exponent: 

𝟏. 𝟓[𝐱]𝟐 = (𝒙𝟐 + 𝟏𝟔) 

𝟐. 𝟐𝟓𝒙𝟐 − 𝒙𝟐 = 𝟏𝟔 

𝟏. 𝟐𝟓𝒙𝟐 = 𝟏𝟔 

𝒙 = ±√
𝟏𝟔

𝟏. 𝟐𝟓
. 

Since the distance from b and c is between 0 and 13 km, we will take the 

positive root which yields:  

𝟑. 𝟓𝟖 𝒌𝒎. 

Summary 

Calculus based optimization involves maximizing or minimizing functions that 

have “real world” applications. Due to the complexity of real-life situations, the 

most difficult aspect is often times finding the correct function to optimize in the 

1st place. The two examples that we’ve covered today illustrate this very point. 

In the first example, we needed to derive the optimization function from 3 other 

equations related to the volume and surface areas of the box respectively. From 

there, we collected like terms in order to create our optimization function and 

found the critical value. Finally, plugging in the critical value back into the 

original optimization function gave us our desired cost. In example II, we 

sketched the bird’s optimal path and used the auxiliary variable k (which 

represents its typical energy level) to create the optimization function. From 
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there, we optimized the function and found the critical value in order to solve 

the problem.  

Outro 

Thank you for watching TutorTube! I hope you enjoyed this video. Please 

subscribe to our channel @UNTLC for more exciting videos! Check out the links in 

the description below for more information about The Learning Center and 

follow us on social media. See you next time! 
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